Identifying rare-variant associations in parent-child trios using a Gaussian support vector machine
نویسندگان
چکیده
As the availability of cost-effective high-throughput sequencing technology increases, genetic research is beginning to focus on identifying the contributions of rare variants (RVs) to complex traits. Using RVs to detect associated genes requires statistical approaches that mitigate the lack of power with the analysis of single RVs. Here we report the development and application of an approach that aggregates and evaluates the transmissions of RVs in parent-child trios. An initial score that incorporates the distortion in transmission of the observed RVs from the parents to their offspring is calculated for each variant. The scores are analyzed using a support vector machine that handles these data by mapping the transmission distortion of the multiple RVs into a one-dimensional score in a nonlinear fashion when parent-child trios with affected and nonaffected children are contrasted. We refer to this approach as Trio-SVM. A total of 275 trios were available in the Genetic Analysis Workshop 18 data for analysis. Because of their nonindependence and the extended linkage disequilibrium (LD) within pedigrees, Trio-SVM was vulnerable to type I errors in detecting association. Using the GAW18 data with simulated trait values, Trio-SVM has an appropriate type I error, but it lacks power with a sample of 267 trios. Larger samples of 500 to 1000 trios, derived from combining the simulated data, provided sufficient power. Two chromosome 3 candidate genes were tested in the real GAW18 data with Trio-SVM, and they showed marginal associations with hypertension.
منابع مشابه
A Novel Support Vector Machine-Based Approach for Rare Variant Detection
Advances in next-generation sequencing technologies have enabled the identification of multiple rare single nucleotide polymorphisms involved in diseases or traits. Several strategies for identifying rare variants that contribute to disease susceptibility have recently been proposed. An important feature of many of these statistical methods is the pooling or collapsing of multiple rare single n...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملA novel method for detecting uniparental disomy from trio genotypes identifies a significant excess in children with developmental disorders.
Exome sequencing of parent-offspring trios is a popular strategy for identifying causative genetic variants in children with rare diseases. This method owes its strength to the leveraging of inheritance information, which facilitates de novo variant calling, inference of compound heterozygosity, and the identification of inheritance anomalies. Uniparental disomy describes the inheritance of a h...
متن کاملThe relationship between parent-child inventory and adolescent’s depression in predicting compulsive obsession’s severity by parents
Objective: The goal of current study is assessing the role of the structure of parent-child relationship in predicting the compulsive obsession’s severity of adolescent’s by compulsive obsession in Ardabil province. Method: The research design is descriptive in the form of correlation and prediction.the research sample included 84 adolescents by OCD referring to Ardabil’s clinics in 1394 who ...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کامل